第六十四章 开普勒方程第1/1段
提出三定律的开普勒,深深的认识到,自己需要给天体的运行定一个法则。
而这个法则需要从简单开始立。
开普勒知道,虽然有三定律,但是却不能准确反应某个天体的确切运动,需要自己去准确计算这些,把在某一时刻在哪里以什么样的运动弄得十分清楚才可以。
开普勒通过三定律得到了一个简单的二体问题的一个方程。
确切说是二体问题运动方程的一个积分。
二体问题里面考虑的是两个天体相互围绕着转,而不时一个运动另一个不动的情况。
它反映天体在其轨道上的位置与时间t的函数关系。
对于椭圆轨道,开普勒方程可以表示为E-esinE=M,式中E为偏近点角,M为平近点角,都是从椭圆轨道的近地点开始起算,沿逆时针方向为正,E和M都是确定天体在椭圆轨道上的运动和位置的基本量。
如果定义天体在轨道上运动的平均角速度为n ,天体过近日点的时刻为τ,则对任一给定时刻t ,天体从近日点出发所走过的角度就是平近点角M=n(t-τ)。
这样,开普勒方程给出了天体在轨道上运动的位置与时间t的关系。
偏近点角是过椭圆上的任意一点,垂直于椭圆半长轴,交长轴外接圆的点到原点的直线与半长轴所成夹角。
开普勒方程是一个超越方程,很难得出严格的分析解,但是,已经证明这个方程存在唯一解。
如果已知某一作椭圆运动的天体的轨道要素,利用二体问题的关系式可以得到任意给定时刻t时的平近点角M,而后采用图解法、数值法或近似迭代法求解开普勒方程得出偏近点角E,再利用二体问题的其他积分而得到t时刻天体在轨道上的坐标和速度。对于抛物线轨道和双曲线轨道也有相应的开普勒方程。
本章节已阅读完毕(请点击下一章继续阅读!)