第七十八章 幸不辱命第1/2段

投票推荐 加入书签 章节错误?快速报错

  这种感觉很奇妙。

  庞学林从来没有想过,原本用来解决数论问题的庞氏几何,竟然还能与非线性偏微分方程联系在一起。

  突如其来的灵感突然发散出去,瞬间,各种奇思妙想开始在庞学林的脑海里涌现。

  ……

  “在与曲面相关的偏微分方程组中,首先需要解决的,便是复结构的存在性问题!这一点,可以从一个经典的老问题入手!即:给定2n维实微分流形m上的一个近复结构j,什么时候这个近复结构是由复结构诱导出来的?”

  ……

  “给定的近复结构j由某复结构诱导,当且仅当在每一点的某邻域内都有局部实坐标{x^1,x^2,x^3……x^2n-1,x^2n},使得 jxj=x^j+n,jx^j+n=-x^j,因为如果存在这样的局部坐标卡集,则复坐标卡集{x+ix^n+1,…,x^n+ix^2n}之间的转换函数便适合cauchy-riemann方程组,从而是全纯函数;逆命题则显然成立。接下来,可以把问题归结为寻找这样的好坐标系,或求解一些一阶线性微分方程组。”

  ……

  “高维情形: newlander-nirenberg定理。近复结构m是(1,1)型张量场,故可以作用到余切丛上.在每一点p∈m处,复化切空间tpmc都可分解为相应于特征值±i的两个子空间的直和。根据连续性,便可得到复化切丛的直和分解……”

  ……

  “引理:设m是紧riemann流形。考虑其上的微分方程δu=f(x,u), f:m*r→r是光滑函数。如果存在u-,u+∈c^2(m)使得u-≤u+,δu-+f(x,u-)≥0 ,δu++f(x,u+)≤0,则存在解x∈c^∞(m)满足u-≤u≤u+……”

  ……

  时间一分一秒过去,一行行犹如天书一般的符号飞快在庞学林笔下流出,填满一张又一张稿纸。

  庞学林徜徉在数学的海洋里,一步步完善庞氏几何的理论框架,充实其血肉上。

  越是研究,庞学林越感觉到,自己所开创的庞氏几何理论,背后隐含着的广阔空间。

  这就好比当年开创了群论的伽罗瓦,将代数研究提升到了一个全新的领域。

  庞学林甚至隐隐意识到,当年格罗滕迪克老爷子为什么要研究远阿贝尔几何了。

  庞氏几何是在远阿贝尔几何的基础上开创出来的,在庞氏几何的基础上,庞学林隐隐感觉到,代数与几何正在相互融合。

  从笛卡尔时代,通过坐标轴将代数与几何有机结合起来,形成了解析几何学,再到黎曼开创代数几何学说,代数与几何这两门数学领域的重要支流,既有着极大的区别,彼此间又有着深刻的内在联系。

  然而,在各大学科枝丫分叉越来越细的时代,想要将代数与几何这两大命题统一起来,几乎是一个不可能的任务。

  但庞学林提出的这个庞氏几何理论,却让代数与几何隐隐有了汇流的趋势,两者之间真正有了沟通的桥梁。

  或许当年格罗滕迪克老爷子也有类似的想法,只可惜老爷子走得早,只提出了远阿贝尔几何的一个理论框架。

  如今,庞学林在远阿贝尔几何的基础上提出的庞氏几何,正在完成格罗滕迪克老爷子未尽的心愿。

  这套理论不仅能解决数论领域的相关难题,甚至在非线性偏微分方程组领域,也有着重要的作用。

  要知道,目前微分方程研究的主体便是非线性偏微分方程(nlpde)。<,在各大学科枝丫分叉越来越细的时代,想要将代数与几何这两大命题统一起来,几乎是一个不可能的任务。


本章未完,请点击下一段进行阅读!

章节目录