第五十三章 比例切割 算法初成第1/2段

投票推荐 加入书签 章节错误?快速报错

  陈东风和李爷爷从董明竹家回来后已经快10点了。

  进屋后,李爷爷对他说:“这段时间你婶婶不容易,她的事情你要多帮帮她。”

  “当然,我是他侄子,不帮他帮谁?爷爷你放心。”陈东风肯定的说。

  “那就好,你也知道,这次你文山叔叔去RB治病花了不少钱,光靠两个人在单位里的几十块工资是不够的。她想经商的想法很好,我很支持她。”

  “现在的万元户,哪个不是做小生意的?婶婶只要敢闯,现在的华国是遍地黄金。”陈东风对董明竹和李文山以后从商也是很看好的。

  “那就好,我老了,不过还是可以为她跑跑关系的。好了,你去洗漱吧,早点休息。”

  陈东风现在哪里还能轻易睡得这么早,好不容易抓住灵感的尾巴,说什么也不能把他丢了。

  其实陈东风在航模的设计阶段,不怕各种数学模型和理论计算。他最讨厌的是各种叶轮的工程设计图纸的绘制。

  工程中表达叶轮表面的方法是投影图法,通常情况下使用的圆柱坐标系中的投影方法是旋转投影以及轴面投影、平面投影。叶轮的轴面投影图反映了叶轮的总体尺寸和特征,而平面投影相当于三视图里面的俯视图。需要叶片表面方程:Θ=(r,z)来一步步画出空间曲线。就算你画的再好,到了加工现场加工的时候也是晦涩难懂,需要专门的技术人员分析出一步步的运动指令,效率十分低下。

  陈东风看到了贝塞尔曲线是光滑离散化成一段段的微小的直线段的实质,如果可以根据贝塞尔曲线的特征方程,设计出一套切实可行的算法——把各种曲率的曲线通过命令来生成,那么既可以简化设计中制图的复杂程度,也可以根据曲线各个离散化的坐标点反推出数控加工的路径。所以如果陈东风可以设计的出来那将是一举两得的。

  70年代现在国际上的流行算法是(以一次方贝塞尔曲线为例)需要在两个定点A、B之间,在选定特定u的情况下在曲线上找到点C(u)。一个简单的方法是把u插到每一个基函数上,计算每个其与基函数的乘积以及其相应的控制顶点,最后将其相加。

  虽然这种方法很好,但是缺乏数值稳定性,尤其是在计算伯恩斯坦多项式的时候可能引进数值误差。当然算法都是各个CAD软件的核心,是不会轻易示人的。

  还有就是一款好的CAD软件不管是算法重要,它的控制核心也是非常重要,当然现在陈东风也没考虑到这些,只是想先把算法设计出来。

  陈东风也是发了狠,不设计出这个算法,连门都懒的出了,过年前的卫生也忘记打扫了。好在李爷爷看他钻研辛亏,毫不计较,尽心尽力的为他做好了后勤工作。

  终于,陈东风在大年三十前把这套他自己命名的比例切割算法给设计出来了。灵感来自于华国历史上著名的数学家祖冲之的割圆术,割圆术目的是等分圆之后取得正多边形,而他的比例切割是取一个特定的比例来逼近一个特殊的曲线。

  简单来讲比例切割算法(以一次贝塞尔曲线为例)的基本观点是选择在AB中的一个点C,C将AB分为u:1-u(A到C的距离与AB之间的距离之比是u),让我们找到决定C在哪里的方法。

  从A到B的向量是B-A。因为u是在0和1之间的比率,点C位于u(B-A)。将A的位置加以考虑,点C为A+u(B-A)=(1-u)A+uB。因此,对于给定的u,(1-u)A+uB是在A和B之间的点C,将AB分为u:1-u的两段。

  更加具有普遍性的比例切割算法的想法如下是假设我们想要找到C(u),u在[0,1]中。由第一个多段线P0-P1-P2-P3...-Pn开始,利用上面的法则找到在线段上的点P1i,P1i在P0i到P0(i+1)的连线上并且将这段线分为u:1-u的两部分。依次地,我们可以得到n个点10,11,12,...,1(n-1),他们定义了一个新的多段线,一共有n-1段。

  新点由1i进行标记,再次利用上面的规则我们可以得到第二个多段线,具有n-1个点(20,21,...,2(n-2))和n-2条边。从这个多段线开始,进行第三次,得到新的多段线,由n-2个点30,31,...,3(n-3)和n-3条边组成。重复这个过程n次得到一个点n0。

  以上想法只是给定了比例切割想法的几何解释,而实际计算需要一个具体的计算方r />
本章未完,请点击下一段进行阅读!

章节目录