第88章 一车破双士所想之把简单的事情复杂化。第2/3段

投票推荐 加入书签 章节错误?快速报错

  (88.3)

  我们再回到双士一车对抗局面,没有将帅,此时双士连虽然红车不能杀掉士。但是由于必须走棋这种规则,火力覆盖一士的时候,利用停顿杀对方。双士连必然有一个士不能动,牵制对方不能动的那个士,移动一步后不改变继续攻击整体,那么对方另一个士的活动造成,双士不能继续联防,所以丢子。

  再看双士对车帅,这样红方车不动,利用帅走闲棋牵制最后得子。在双士对帅车中,双士被迫,是因为等招。一个车能够牵制不动的那个士,另一士必然被迫走动,造成双士脱离联系,被无损捉子。

  在复杂一些,黑方加一将形成双士将,红方车帅,此时又要加入黑将对士的守护,是否增加红方破掉双士的难度?黑将的存在同时又是被攻击的目标,新的增加红车对黑将的攻击因素。提出红方是先能够破士还是先破将呢?红方是先一步攻破单一的将呢?还是破掉双联的士呢?当然这种想法是假设将与其它子力是平等的。

  当然黑将与士是不等的,这种假想有些费脑袋。这里我们不在纠结将军问题,而是思考另一问题,此时红方能否无损得士?你还别说,一个车还真拦不住双士黑将的防守。车看住双士的时候,黑将能够自由活动。一个车不能同时看住双士和黑将。看住双士,黑将活动;看住黑将,黑士活动。一车难以破掉双士将三个子力的活动。

  再把双士换成单士一将,由于黑士将在九宫活动,竖向看只有三条道路,车追逐黑将时候,黑将能够两条道路来回选择,看似不能拿黑方怎么样,实则红车驱逐黑将一路后,在驱逐黑士(设原来在肋道)回中,此时黑将在中路那么黑将中士一线;如果黑将在肋道,那么在去车追逐则黑将回中,这样必然造成黑将黑士一线,这样就会形成车牵制将士然后利用等招造成黑方丢子。这样我们就论证了不论是两个士还是一个士一个将两个子力,由于活动范围有限,必然造成车牵制两个子力,造成无损取子条件。这样由于活动范围一定造成车能够抗衡两个子力相互防守,红方车必然胜利。而三个子力双士将对车的时候,一车已经难以抗衡,不能无损破防。这样看象棋中即使在有限范围内一个子力最多对抗两个子力,能够无损得子。面对三个子力时候,也不能破防。

  这样一个子力最多对抗“两个子力能够无损得子,多余两个时候已经无能威力”的经验性结论。———弈修随想记。

  当我们把这个结论运用到通常说的一车对双士的时候即一车一帅对双士一将,红帅牵制黑将. 这样又变成一车对双士,红方能够胜利。当然这是一种外推。至于能否成立还在两可两不可之间。

  这里对不对先拿着结论来用,象棋中一个子力最多能够破防两个子力,两个子力能够破防三个子力,三个子力能够无损破防四个子力等等等。———哈哈,对不对拿着先用。不收钱。

  如何证一车一帅能够破双士将呢?

  双士占据两个竖直线,黑将可能占据双士那两条线,或者占据另一条线,这样红车将军必然能够驱逐黑将到有士的那边,或者对方调动士来到有将的这一条线。就是说三个子两条竖线,必然形成子力共线。

  此时红帅能够牵制对方将士,这与红帅在哪条线无关。此时一种情形是在红方帅牵制下红方车能够取士。例如图1,2等情况。。另一种情形是黑将士红帅牵制时候没有事情,但调车用车时候,黑方解开栓链,此时怎么办?如图3等情况。此时黑将歪出露头,红车将军,黑将回去,红车不外移,不动,红车封锁一条线。

  (88.4)

  逼迫黑将到右边肋道。此时中士不能动弹,此时平车左翼能够进底将军的地方,此时黑将不再能够回中路,会被沉底将军宫活动,竖向看只有三条道路,车追逐黑将时候,黑将能够两条道路来回选择,看似不能拿黑方怎么样,实则红车驱逐黑将一路后,在驱逐黑士(设原来在肋道)回中,此时黑将在中路那么黑将中士一线;如果黑将在肋道,那么在去车追逐则黑将回中,这样必然造成黑将黑士一线,这样就会形成车牵制将士然后利用等招造成黑方丢子。这样我们就论证了不论是两个士还是一个士一个将两个子力,由于活动范围有限,必然造成车牵制两个子力,造成无损取子条件。这样由于活动范围一定造成车能够抗衡两个子力相互防守,红方车必然胜利。而三个子力双士将对车的时候,一车已经难以抗衡,不能无损破防。这样看象棋中即使在有限范围内一个子力最多对抗两个子力,能够无损得子。面对三个子力时候,也不能破防。


本章未完,请点击下一段进行阅读!

章节目录